If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1627=16t^2
We move all terms to the left:
1627-(16t^2)=0
a = -16; b = 0; c = +1627;
Δ = b2-4ac
Δ = 02-4·(-16)·1627
Δ = 104128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{104128}=\sqrt{64*1627}=\sqrt{64}*\sqrt{1627}=8\sqrt{1627}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{1627}}{2*-16}=\frac{0-8\sqrt{1627}}{-32} =-\frac{8\sqrt{1627}}{-32} =-\frac{\sqrt{1627}}{-4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{1627}}{2*-16}=\frac{0+8\sqrt{1627}}{-32} =\frac{8\sqrt{1627}}{-32} =\frac{\sqrt{1627}}{-4} $
| 3x×18=17 | | 3x-74=-7x66 | | 3(x+3)+x=2(x+2)+7 | | 8x-15=3x10 | | 2x+22=6x+54 | | 2x+2=5x+35 | | 3k−5+2=21 | | 2x^2-1=-8 | | 5+n/10=-6 | | 2×+22=6x+54 | | 9x-262x-124x+43= | | 6(x)+6=90 | | 4(y-1)-(-y-5)=10 | | 6n+1=+4n–10n | | 7(x-2)-5(x-2)=2(x-4) | | 7(x-2)-5(x-2)=(x-4) | | 5+16y-4y=1 | | x-2=-14+2x | | -5r+1=31 | | 5-3j=-21 | | -9+4x+12x-5=100 | | 7/(4x)=3/(x-5) | | 1/5l=5 | | 6x-21=-15 | | (1^6)/(1^5/4)=1^x | | 2x+14=2x-7125 | | 4(+7)+x=3(x+5)-2 | | 11.50=2p+1.50+(2p+1.50)0.15 | | 3x8=60 | | 7(x-2)-5(x-2)=-1-4x) | | 5/4x=6 | | 4x+18=-24 |